ppcpy.interface.picassoProc#
Classes
initialize the data_cube |
- class ppcpy.interface.picassoProc.PicassoProc(rawdata_dict, polly_config_dict, picasso_config_dict, polly_default_dict)[source]#
initialize the data_cube
- Parameters:
rawdata_dict – the dict returned by readPollyRawData.readPollyRawData(filename=rawfile)
polly_config_dict – the configuration specific to the specific polly loadConfigs.loadPollyConfig(polly_config_file_fullname, polly_default_config_file)
picasso_config_dict – the general picasso config loadConfigs.loadPicassoConfig(args.picasso_config_file,picasso_default_config_file)
polly_default_dict – default values for some of the retrievals loadConfigs.loadPollyConfig(polly_default_file_fullname, polly_default_global_defaults_file)
- counter = 0#
- gf(wavelength, meth, telescope)[source]#
get flag shorthand
i.e., the following two calls are equivalent
` data_cube.flag_532_total_FR data_cube.gf(532, 'total', 'FR') `where the pattern {wavelength}_{total|cross|parallel|rr}_{NR|FR|DFOV} from PollyNET/Pollynet_Processing_Chain#303 is obeyed
- Parameters:
wavelength – wavelength tag
meth – method
telescope – telescope
- Returns:
with bool flag
- Return type:
array
- setChannelTags()[source]#
set the channel tags
they are stored as dictionary in
` data_cube.channel_dict `and as list in
` data_cube.retrievals_highres['channel'] data_cube.polly_config_dict['channelTags'] `as an array of boolean flags in
` data_cube.flags `as flags per channel in
` data_cube.flag_355_total_FR `- Return type:
self
- polarizationCaliD90()[source]#
The stuff that starts here in the matlab version PollyNET/Pollynet_Processing_Chain
- cloudFreeSeg()[source]#
PollyNET/Pollynet_Processing_Chain
data_cube.clFreGrps = [ [35,300], [2500,2800] ]
- calcMolecular()[source]#
calculate the molecular scattering for the cloud free periods
with the strategy of first averaging the met data and then calculating the rayleigh scattering
- rayleighFit()[source]#
do the rayleigh fit
direct translation from the matlab code. There might be noticeable numerical discrepancies (especially in the residual) seemed to work ok for 532, 1064, but with issues for 355
- overlapCalc()[source]#
estimate the overlap function
different to the matlab version, where an average over all cloud free periods is taken, it is done here per cloud free segment
- overlapCor()[source]#
the overlap correction is implemented differently to the matlab version first a 2d (time, height) correction array is constructed then it is applied. In future this will allow for time variing overlap functions
- write_2_sql_db(db_path: str, parameter: str, method: str | None = None)[source]#
write LC or eta to sqlite db table parameters: - parameter (str): can be LC (Lidar-calibration-constant) or DC (Depol-calibration-constant) - method (str): ‘raman’ or ‘klett’ - db_path (str): location of the sqlite db-file